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Introduction

The use of sensor technologies for motion detection 
is increasingly gaining in importance in exercise 
therapy. Due to demographic changes, the number 
of elderly patients is constantly increasing. Further-
more, there is currently insufficient care regarding 
exercise therapy. The supervision of 12 to 15 patients 
makes it impossible for the therapist to correct and 
eliminates movement errors (13). This means that 

therapists can not meet the requirements to care for 
a maximum of 10 patients on the training area (5).  
Therefore, sensor systems and visual feedback will 
need to be the therapists’ “third eye”. This is rele-
vant if many patients train at the same time, when 
the therapist cannot detect any motion error or 
give correction instructions. Patients can control 
and correct their movement through feedback  
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›› Background: In the rehabilitative setting, the use of senor tech-
nologies is gaining in importance, especially the use of marker- 
and contactless systems. Reliably detecting motion and error 
patterns is absolute prerequisite for use in exercise therapy. In 
this study, an annotated algorithm for the skeletal model of the 
sensor Kinect 1.0 was compared with movement detection by 
a therapist.

›› Methods: 18 test subjects (male: 10, female: 8; age 68.3±5.9 years) 
performed 3 sets of hip abduction exercises with 10 repetitions 
using the rope pull. The assessment of the movement by an expe-
rienced therapist was coded and then directly compared to the 
Kinect 1.0 detection results. The diagnostic parameters sensitiv-
ity, specificity, false-positive rate, positive predictive value, and 
negative predictive value were calculated. 

›› Results: There was 70% agreement over all error patterns. 
Sensitivity was between 12.9% (hip rotated outside) and 66.6% 
(bent knee), and specificity was around 80%. The false-positive 
value ranged between 13% (wrong plane) and 22.7% (hip rotated 
outside). The positive predictive value for hip rotated outside was 
74.3%. The negative predictive value ranged between 77.1% (upper 
body) and 92.7% (bent knee).

›› Discussion: The results show that not all error patterns were 
detected by the Kinect 1.0 system. However, correct movements 
mostly were rated appropriately. The latter is significant in terms 
of user acceptance. In the case of the error patterns upper body 
and hip rotated outside it can be assumed that the detected 
errors actually occurred. With an agreement of 70 %, the data 
show sufficiently reliable movement detection for the assistance 
system to be used to support therapy. Further studies should fo-
cus on the use of the system, for example user acceptance or the 
feasibility of feedback.

›› Problemstellung: Im rehabilitativen Umfeld gewinnt die 
Anwendung von Sensortechnologien, insbesondere der Einsatz 
marker- und kontaktloser Systeme, an Bedeutung. Die zuver-
lässige Bewegungserkennung, aber auch die Erkennung von 
Fehlerbildern während der Bewegung sind hierbei Grundvoraus-
setzungen. Daher war es Ziel der Studie, einen entwickelten Algo-
rithmus zur Fehlerbilderkennung, welcher für das Skelettmodell 
der Kinect 1.0 annotiert wurde, mit der Bewegungserkennung 
eines erfahrenen Trainingstherapeuten zu vergleichen.

›› Methoden: 18 Probanden (männlich: 10, weiblich: 8; Alter 
68,3±5,9 Jahre) führten die Übung Hüftabduktion in 3 Sätzen zu 
10 Wiederholungen am Seilzug durch. Die Bewegungserkennung 
eines erfahrenen Therapeuten wurde durch Codes direkt mit 
der des Systems abgeglichen. Damit wurden die diagnostischen 
Parameter Sensitivität, Spezifität, falsch-positiver Wert sowie 
positiver und negativer Vorhersagewert ermittelt. 

›› Ergebnisse: Es ergab sich über alle Fehlerbilder eine Überein-
stimmung von über 70%. Die Sensitivität lag zwischen 12,9% (hip 
rotated outside) und 66,6% (bent knee), die Spezifität um 80%. 
Der falsch-positive Wert betrug zwischen 13% (wrong plane) 
und 22,7% (hip rotated outside). Der positive Vorhersagewert ist 
für hip rotated outside 74,3%. Der negative Vorhersagewert liegt 
zwischen 77,1% (upper body) und 92,7% (bent knee). 

›› Diskussion: Es werden nicht alle Fehlerbilder vom System er-
kannt, jedoch die richtige Bewegungsausführung als korrekt 
identifiziert. Letzteres ist hinsichtlich der Nutzerakzeptanz von 
Bedeutung. Bei den Fehlerbildern upper body und hip rotated out-
side ist davon auszugehen, dass die erkannten Fehler tatsächlich 
aufgetreten sind. Die Daten zeigen mit über 70% Übereinstim-
mung eine genügend zuverlässige Bewegungserkennung, sodass 
das Assistenzsystem in der Therapie als Unterstützung genutzt 
werden kann. Weitere Studien sollen den Einsatz des Systems in 
der klinischen Praxis aufgreifen, bspw. die Nutzerakzeptanz der 
Probanden oder die Umsetzbarkeit des Feedbacks.
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generated by sensor technology. The use of sensors is only hel-
pful if they identify movement similarly to an experienced the-
rapist. 3D-depth sensors are often used due to their markerless 
and contactless motion detection. The advantages of these sen-
sors compared with marker-based motion capture systems are 
their user friendly operation and low costs. For use in exercise 
therapy, marker-based systems are impracticable because atta-
ching the markers is complex and requires skilled personnel. In 
a review, Verbrugghe et al. (19) showed the use of technical sys-
tems in rehabilitative exercise therapy. Kato et al. (10) carried 
out an investigation using a self-developed prototype consisting 
of a 3D-depth sensor and feedback system. They tested healthy 
and injured test subjects (brain injury). The 3D-depth sensor 
was used to detect the position of the test subjects. A vibrator 
was used for sensory feedback. For the training of the upper 
limbs and the balance target object were displayed that should 
be tracked. Patients needed more time to complete their first 
tasks. The time was shortened from the first to the last attempt. 
The balance task should also be completed in a shorter time. 
The angle values of the patients also approximated those of the 
healthy ones. The researchers considered the use of 3D-depth 
sensor in the system as useful.

Kato et al. (10), Wang et al. (20) and Fernandes-Baena et al. 
(7) found that the 3D-depth sensor is suitable for movement 
analysis in rehabilitative exercise therapy. 

Wang et al. (20) and Fernandes-Baena et al. (7) carried out 
investigations to evaluate the 3D-depth sensor in comparison 
with marker-based motion capture systems. They tested motion 
detection in rehabilitative exercise therapy. Wang et al. (20) ex-
amined the motion detection accuracy of the 3D-depth sensor 
in the first and second generation with an optical marker-based 
motion capture system. For determination of joint localization 
of all three systems, 20 joint points were determined. These are 
the same in the three systems. 12 exercises were carried out for 
the test. The determination of the bone length showed for the 
3D-depth sensor in first generation larger offsets and standard 
deviation, especially in the femur. The cause may be the offset of 
the hip joint. The sensor in second generation was robust against 

interference and showed an exact tracking of the position. With 
regard to the present study the information on offsets of the hip is 
of importance. Movements of the lower extremities are observed, 
so that shifts are also possible here. Furthermore in the present 
study Kinect 1.0 is used. Fernandes-Baena et al. (7) came to sim-
ilar conclusions when comparing with the optical system. The 
results show a synchronicity in the signals of the 3D-depth sen-
sor and the optical marker-based system within the movement 
patterns, so that the offsets for tested knee and hip movements 
were less than 10°. Furthermore, the position of the extremities 
to the sensor plays an important role. In extreme rotation, the leg 
is perpendicular to the Kinect sensor and there are errors when 
tracking hip or knee. For the rehabilitation of knee patients, a 
sensor system was developed which uses a 3D-depth sensor to 
record the movement, count the repetitions, and give feedback 
regarding movement quality. Technical assistance systems are 
often used in motor rehabilitation (2, 8). Feedback is generated 
for the user from the resulting measurement data.

In the study by Banala et al. (2), the movements were cap-
tured using force and pressure sensors, and Hirokawa & Matsu-
mura (8) detected the foot position electronically. In addition, it 
has been proven that visual feedback from assistance systems 
improves the movement quality (1, 12, 18, 19).

Previous studies have tested the accuracy of movement de-
tection in various technical systems and showed that marker-
less optical sensors can provide support (7, 20). So far known, 
the 3D-depth sensor has only been validated with other optical 
sensors.

This paper aims to compare the developed algorithm for 
error detection with the movement assessment of a therapist. 
For validation, important parameters of clinical studies were 
calculated. These are sensitivity, specificity, false-positive value, 
positive predictive value and negative predictive value. The con-
tactless and markerless depth sensor Kinect 1.0 was used due to 
its user-friendly operation, which is essential in exercise therapy.

	 Methods	

Sample
18 healthy subjects participated in the study (68.3±5.9 years) 
(Table 1). Before the study, all subjects were informed about the 
study design and purpose and then gave informed consent to 
their participation in writing. 

The inclusion criterion for participation in the study was the 
age between 50 and 80 years. Exclusion criteria were neurolog-
ical health restrictions and pain during the movement to be 
performed. The examination standards corresponded to the 
Declaration of Helsinki.

Test
The test subjects were asked to perform the exercise hip abduc-
tion on a rope pull (Fig. 1), which is a therapeutically relevant 
exercise for strengthening the hip abductors (13). A cuff was 

Participant characteristics for all subjects. male and female. with mean ± standard derivation (SD). minimum (min) and maximum (max).

AGE [YEARS] HEIGHT [M] BODY MASS [KG]

N MEAN MIN MAX MEAN MIN MAX MEAN MIN MAX

All 18 68.3±5.9 53.0 78.0 1.7±0.1 1.5 1.9 71.0±12.9 47.9 104.0

Male 10 69.7±5.7 63.0 78.0 1.7±0.1 1.7 1.9 78.5±11.1 62.0 104.0

Female 8 66.6±6.0 53.0 73.0 1.6±0.1 1.5 1.7 61.6±7.9 47.9 72.0

Table 1

Four-field table to determine diagnostic parameters sensitivity (SENS). 
specificity (SPEC). false-positive value (FPV). positive predictive value 
(PPV) and negative predictive value (NPV).

„PREDICTOR“ KINECT
Non error 
detecte

Error 
detected

„CRITERION“
Non error 
detected

b d SPEZ

THERAPIST 
ASSESSMENT

Error 
detected

a c SENS

NPV PPV

Table 2
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attached above the ankle joint for resistance transmission. The 
resistor was then attached to the weight block of the rope pull 
and the subject stood at the side of the device. To become fa-
miliarized with the test procedure, each subject completed five 
repetitions without weight. The subjects should do a physiologi-
cal hip abduction without specification of the abduction angle. 
Subsequently, subjects carried out three sets with 10 repetitions 
under load (10kg) (set pause 30 s).

Meanwhile, the 3D -RGB and depth sensor Kinect 1.0 (Mic-
rosoft Corporation, Remond, WA, 98052-7329, USA) in the assis-
tance system recorded the movements. At the same time, an ex-
perienced training therapist observed the patient’s movements. 
An evaluation sheet was used to record error images perceived 
by the therapist (more than five years clinical practise). The error 
images concentrated on flexed upper body (UB), wrong plane 
(WP), bent knee (BK), and hip rotated outside (HO) (Fig. 1) and 
are based on an expert survey (13). 

Equipment
The sensor was placed four meters from the front of the subject 
training on the rope hoist. The PC connected to the sensor pro-
cessed the skeletal data to detect error patterns. Prior to the 
measurements, the assistance system was trained to detect the 
above error patterns using skeletal data from the sensor Kinect 
1.0, machine learning methods, and Incremental Dynamic Time 
Warping (IDTW). Thus, the error patterns were automatically 
annotated to the assistance system by previously recorded ex-
ample sequences of the correct and faulty exercise executions. By 
normalizing the skeletal data, it was possible to teach the system 
independently of the size and stature of a person (15).

The comparison of the subject’s movements recorded by the 
assistance system and the evaluation by the algorithm took place 
according to the following rules: BK: measured knee angle <165°; 
UB: angle between shoulder center and left ankle, with pivot 
point hip center, <160°; WP: distance of right ankle to correct 
plane of motion >380 mm; HO: detection by foot position (Fig. 1).  
On this basis, movements outside these limits were classified 
by a support vector machine (SVM) as error patterns. The error 
patterns recorded for each frame (time) were then filtered again 
to smooth the error patterns displayed to the user. For this pur-
pose, a time window was created for each error pattern, which 
contains the detection results of the last 3 or 5 frames for each 
error pattern (15). This was only visualized if the system detected 
an error for the majority (majority of 3 frames are 2, majority of 
5 frames are 3) of the elements contained in this time window.

Statistical Analysis 
For the statistical analysis of the data, the correct classificati-
on rate was evaluated with the statistical software R (14). This 
indicates the number of correct predictions in relation to the 
total number of observations. The codes issued by the assistan-
ce system (e.g. 0; 1; 0; 0) were offset against the evaluation of the 
therapist, which was also available as a code (e.g. 0; 1; 0; 0). The 
sequence of digits corresponds to the order of the error pattern 
UB; WP; BK; HO. 0 means that no error was detected, 1 means 
that an error was present according to the evaluation. The dif-
ference between the assistance system and the therapist was 
calculated for each individual repetition of each test subject. 
The given numerical example then provides a difference code of 
0; 0; 0; 0, i.e. system and therapist matched. If there were positive 
values (+1) in the difference codes, the system recognized an 
error that the therapist did not specify. Negative values (-1) were 
those values where the therapist indicated an error that the 
system did not recognize. Thus, the difference codes shown in 
Fig. 2 were created, reflecting the occurrence and distribution 
of the error pattern. It was assumed that the therapist correctly 
judged the movements, so that the therapist’s evaluation was 
used as a reference for the evaluation of the assistance system.

To determine the diagnostic parameters sensitivity, speci-
ficity, false-positive value, as well as the positive and negative 
predictive values, the cases of equal and unequal evaluation per 
error pattern were calculated on the basis of the code output 
using a four-field table (Table 2; equations 1-5).

In the present study, the parameters relating to error detec-
tion by the assistance system and the therapist are defined as 
follows (Equations see Table 5):

Sensitivity (SENS): The ability of the system to identify a er-
ror pattern as such (Equation 1)

Specificity (SPEC): The ability of the system to identify a cor-
rect movement as such (Equation 2)

False positive value (FPV): Error of the system to identify a 
correct movement as an error pattern (Equation 3)

Positive Predictive Value (PPV): The probability that an error 
pattern is actually present if it has been identified by the system 
(Equation 4).

Negative predictive value (NPV): The probability with which 
a correct movement actually exists if it has been identified by 
the system (Equation 5) (3, 4, 16).

SENS and PPV are therefore used as measures for predicting 
error patterns. SPEC and NPV, on the other hand, are measures 
for predicting correct motion.

Figure 1  
Error patterns for hip abduction exercises on the rope pull.
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To visualize the prediction accuracy of the assistance sys-
tem, ROC curves (Receiver Operating Characteristic Curve) 
were generated for the individual error pattern. The area under 
the curve (AUC) represents the accuracy of the error statistics.

	 Results	

A total of 18 subjects completed the test task consisting of three 
sets of ten repetitions, so that 540 cases were included in the 
calculation. In 253 cases, the therapist and the system matched 
with respect to error pattern recognition. Counting statistics 
were used to determine 47 different difference codes, explained 
in the previous section, which occur at different frequencies 
(Fig. 2). The values +1 and -1 resulted from cases of unequal 
evaluations between therapist and system. In 165 cases, the 
graphic shows a match in three error pattern, and one error 
pattern was evaluated differently. In 122 cases, the evaluations 
differed for more than one error pattern.

The cases of unequal evaluations were used as base values 
to determine the statistical parameters SENS, SPEC and FPV, 
as well as PPV and NPV (Table 3).

The agreement between therapist and system was more than 
70% for all error patterns (UB: 74.6%, WP: 80.7%, BK: 81.5%, HO: 
81.5%). These values were calculated on the basis of the frequen-
cies of the individual error patterns within the individual rep-
etitions.

SENS ranged from 12.9% (HO) to 66.6% (BK). SPEC was 
80% (77% HO, 87% WP), and FPV assumed values between 
13% (WP) and 22.7% (HO). NPV was highest for HO (74.3%) 
and lowest for WP (45.8%). NPV was between 77.1% (UB) and  
92.7% (HO) (Table 4).

The ROC curves (Fig. 3) show the accuracy of the test statis-
tics for the determined error patterns, which is expressed by 
the AUC. Values close to the diagonal correspond to a random 
test result, since the hit rate and the false positive rate are close 
together. The AUC for the individual error patterns is between 
0.693 (WP) and 0.822 (HO). 

	 Discussion	

Assistance systems to improve motion control must meet high 
standards with regard to the quality criteria to actually be be-
neficial in practice. The aim of the present study was to validate 
a markerless assistance system for motion analysis based on 
depth image information. Therefore, the algorithm developed 
for error pattern recognition was compared with the recogniti-
on skills of an experienced therapist. SENS, SPEC, FPV, as well 
as PPV and NPV were analyzed to be able to make statements 
on the accuracy of the system.

All error patterns evaluated showed an agreement between 
therapist and system of more than 70%. Therapist and system 
showed the lowest agreement for the evaluation of the error pat-
tern UB, with 74.6%, and for the evaluation of the error pattern 
BK and HO the highest agreement, with 81.5%.

This means that the algorithm detected at least 70% of the 
movement errors detected by the therapist. The highest SENS 
was 66.6% (BK) and the highest SPEC was 86.9% (WP).

Variations were found for the HO error pattern with a low 
SENS of 12.9%, an average SPEC of 77.3%, and the highest FPV 
of 22.7% (Tab. 4). SENS describes the ability of the system to 
identify an error pattern as such. A low SENS means a low sus-
ceptibility to errors (for HO). That means, if the system is not so 
sensitive, fewer errors for HO will be detected. However, with 
low SENS the PPV increases and it describes that it can be as-
sumed that the detected HO actually occurred.

In clinical tests, SENS indicates how many of the patients 
affected by a disease are actually identified as positive by the 
test. Determining SPEC is just as important. A test with a high 

Determining factors for diagnostic parameters; UB: upper body; WP: wrong plane; BK: bent knee; HO: hip rotated outside.

N=540 ERROR PATTERN

CRITERION UB WP BK HO

Therapist detects an error  
that the system does not indicate 

absolute 88 46 30 30

relative 16.3% 8.5% 5.6% 5.6%

System detects an error  
that the therapist does not indicate 

absolute 49 58 70 70

relative 9.1% 10.7% 13.0% 13.0%

Therapist detects an error  
that the system also recognizes 

absolute 106 49 60 202

relative 19.6% 9.1% 11.1% 37.4%

Therapist does not detect any errors, which 
corresponds with the system’s findings 

absolute 297 387 380 238

relative 55.0 % 71.7% 70.4% 44.1%

Table 3

Diagnostic parameter’s sensitivity (SENS). specificity (SPEC). false-posi-
tive value (FPV). positive predictive value (PPV) and negative predictive 
value (NPV) for validation of the assistance system; UB: upper body; WP: 
wrong plane; BK: bent knee; HO: hip rotated outside.

UB WP BK HO

SENS 0.454 0.516 0.666 0.129

SPEZ 0.858 0.869 0.844 0.773

FPV 0.141 0.130 0.155 0.227

PPV 0.684 0.458 0.462 0.743

NPV 0.771 0.894 0.927 0.888

Table 4

Equations.

(1) P  = a /(a+ c)

(2) P  = d /(b+d)

(3) P  = b /(b+d)

(4) P  = c /(c+d)

(5) P  = b /(a+b)

Table 5
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SPEC identifies healthy individuals as healthy and is therefore 
negative. SPEC decreases if a test produces many FPVs. In ad-
dition, PPV reflects the probability that a disease is actually 
present when it is identified by the test. The NPV is therefore the 
probability with which a healthy person is actually identified 
as such by the test (4, 6, 16). 

The SENS found in this study shows that not every error pat-
tern indicated by the therapist was also detected by the algo-
rithm. For the patient, this may mean that incorrect movement 
sequences may be automated, since the error was not consid-
ered necessary for correction, either by the system or by the 
patient themselves. As a result, muscle groups are trained that 
are not the primary focus of the therapy.

The analyzed SPEC shows that correct movements were 
mostly evaluated as correct. This plays a decisive role for moti-
vation and user acceptance.

The FPV, which here lie between 13% and 22.7% (Table 4), 
indicate that in individual cases correct movements were de-
tected as errors. Displaying a movement error despite correct 
execution may lead to uncertainty in the patient and reduce 
acceptance of technical aids.

High SENS values are associated with a greater suscep-
tibility to errors, i.e. the more sensitive the system reacts 
the more errors are detected. A low SENS, such as the HO 
error pattern (12.9%) and a high PPV (74%), indicate that 
this error was not detected as well by the system. Howev-
er, if this was the case, the error was actually present. This 
is confirmed by the AUCs of the ROC curves, which was  
0.822 for HO. 

The parameters SENS and SPEC are based on the occurrence 
or non-occurrence of incorrect movements, which is deter-
mined in validation studies using reference standards (6). Such 
a reference measure is not available in this study. In summary, 
therefore, the tested assistance system can be used in practice 
to support movement control, but cannot replace a therapist.

In all error patterns the SPEC assumes that it has been 
correctly identified as correct. In the case of UB and HO the 
probability are the highest that the error pattern detected by 
the system occurred. Due to the care situations, it is advan-

tageous to be able to use marker and contactless systems  
as support.

Markerless and contactless sensors have become estab-
lished for use in therapy. They permit movements without im-
pairments and do not require any additional assistance, as for 
example with the marker attachment of other motion capture 
systems. Therefore, the 3D-depth sensor Kinect 1.0 was used 
in this study.

In addition to the number of repetitions, the number of sets 
and the angle (ROM) of the movement, the error patterns that 
occur also provide important information for patients and ther-
apists. For an assistance system to provide support, the execu-
tion of the movement and the errors must be reliably detected. 
This is the basic prerequisite for generating feedback to the user 
from the recorded movement. Hopper et al. (9), Kim et al. (11), 
Lösch et al. (12) have already been able to show positive effects 
by adhering to a visual target value in motion control. For ex-
ample, bar graph tracking at Kim et al. (11) resulted in positive 
adjustments in stride length and walking speed. Visual feed-
back can assist the patient in movement execution and giving 
information, for example on amplitude and speed.

Until now, Kato et al. (10) and Verbruggheet al. (19) have de-
scribed the reliable use of technical assistance systems in train-
ing therapy. Markerless systems have become established for 
motion detection. They result in fewer movement restrictions 
that can be caused by the placement of the sensors. Markerless 
systems can increase user-friendliness because they do not re-
quire complicated installation prior to use.

Further studies compared the motion detection accura-
cy of the markerless 3D-depth sensor in the first and second 
generation against marker-based motion capture systems. It 
is therefore known that the skeletal model of the 3D-depth 
sensor, in particular for the first generation, shows inaccura-
cies in skeletal recognition. Wang et al. (20) found deviations 
of about 200 mm in the localization of the hip joints. In addi-
tion, statistically significant differences were shown between 
the first and second generation of the sensors in the skeletal 
points SPINE, ROOT (trunk), HIP, ANK (ANKLE), and FOO 
(FOOT). Also at second generation, the foot and ankle 

 

Figure 2  
Frequency of difference codes; 0: therapist and system agree; 1 system recognized an error, which the therapist did not notice; -1: therapist recognized an 
error, which the system did not recognize.
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joint positions are still approx. 100 mm from the base level. 
In addition, Fernandes-Baena et al. (8) describe that the po-
sitioning of the extremities to the sensor has a decisive influ-
ence on the accuracy of skeletal recognition. Xu & McGorry 
(21) found a significantly more accurate detection of the upper 
extremities compared to the lower extremities for the 3D-depth 
sensor in both generations. For example, the accuracy level for 
hand and arm was within 100 mm, while for hip and legs it was  
over 100 mm. 

Previous studies as well as the present results show that 
a 100% error image recognition is currently not possible. The 
underlying skeletal model of the depth sensor is assumed to be 
the cause (7, 20, 21).

A more accurate skeletal model can help to increase the 
accuracy of error detection, which reliably determines the 
positions of the joints in three-dimensional space. For this 
purpose, a separate model must be developed and evalu-
ated. Furthermore, it has to be investigated to what extent 
further feature vectors improve the error classification. 
The further development of the existing algorithm, which 
is based on a mean value filter, will contribute to improv-
ing filtering. This will make it possible to filter out any  
error detections.

	 Limitation and Conclusion	

In the present study, the assistance system developed for the 
hip abduction exercise on the rope pull was tested for reliable 
error recognition. It is well known that other exercises with 
high therapeutic benefits also present problems due to several 
degrees of freedom in the execution of movement. Statements 
about the validity of error recognition in other exercises cannot 
currently be made.

The assessment of the movement 
by a therapist was used for validation. 
The therapist observed the movement 
for the occurrence of the error patterns 
upper body (UB), wrong plane (WP), 
bent knee (BK), and hip rotated outside 
(HO), which the system was trained to 
evaluate. In an expert survey these er-
ror patterns were reported as frequent 
errors. The therapist’s assessment was 
then used as a reference. At this point, 
a professionally experienced therapist 
with more than five years practice was 
used for observation. The practical ex-
perience of the therapist can be consid-
ered sufficient and valid. For completely 
validation, it will be necessary in future 
studies to have the system tested by at 
least 3 therapists.

Technical assistance systems for 
motion control are becoming increas-
ingly important in training therapy. In 
this study, error pattern recognition by 
an algorithm annotated to the sensor 
was compared with the error pattern 
recognition of a therapist for the first 
time. This resulted in an agreement of 
approx. 70%. The developed assistance 
system can thus be used as an objective 
instrument for motion control in clini-
cal settings. In the long term, such a sys-

tem could provide patients with visual feedback on movement 
and document the course of therapy.�
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Figure 3  
ROC curves and AUC values for the detected error patterns for UB, WP, BK, HO.
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