Sportmedizin im Wandel

Sensorimotoric Feedback Performance in Obese and Normal-Weight 11 to 15 Year-Old School Children

Sensomotorische Feedbackleistung bei adipösen und normalgewichtigen 11- 15-jährigen Schülerinnen und Schülern


The sensorimotoric feedback performance of obese children and juveniles has been subject of scientific analysis in a very limited way. Studies show that normalweight children score higher as intensity increases when testing general motor skills, but there are hardly any results on sensorimotoric feedback performance up to now. The aim of this study is to compare the static and dynamic balance of obese and normal-weight school children. Materials and Methodology: Obese school children (BMI>97. percentile) ages 11 to 15 (n=20) from an obesity rehabilitation centre were tested using a sensorimotoric feedback device and the results were compared to the results of a control group (n=67) of normal-weight school children of the same age. Results: The test group of obese school children achieved significantly lower (p<0.05) scores on tests for static and dynamic balance compared to the control group. Normal-weight school children: Total score 650±71 (SD); obese school children: Total score 492±90 (SD). Conclusion: The low results of obese school children and juveniles on static and dynamic balance show the necessity of a specific and individual movement program for obese children in order to counter the existing deficits that may cause restrictions in their everyday life.

Key Words: Balance, sensorimotoric Feedback Performance, obesity, school


Die sensomotorische Feedbackleistung adipöser Kinder und Jugendlicher wurde in bisherigen Studien noch kaum berücksichtigt. Untersuchungen belegen zwar, dass mit zunehmender Bewegungsintensität bei Testaufgaben die Unterschiede zwischen Adipösen und Normalgewichtigen zugunsten der Letztgenannten zunehmen, aber im Bereich der sensomotorischen Feedbackleistung gibt es bis dato kaum Ergebnisse. Das Ziel dieser Untersuchung ist es, ein Bild der statischen und dynamischen Gleichgewichtsfähigkeit von adipösen im Vergleich zu normalgewichtigen Schülerinnen und Schülern zu erhalten. Material und Methode: Mittels eines sensomotorischen Feedbacktestgeräts wurden 11-15-jährige (n=20) adipöse Schülerinnen und Schüler (BMI>97. Perzentil) eines Adipositas-Rehazentrums gestestet und mit einer Gruppe von n=67 normalgewichtigen gleichaltrigen Jugendlichen verglichen. Ergebnisse: Die Gruppe der adipösen Schülerinnen und Schüler erzielte gegenüber den Normalgewichtigen sowohl bei den statischen als auch dynamischen Testungen signifikant (p<0,05) schlechtere Ergebnisse. Die Normalgewichtigen erreichten beim Gesamtscore mit 650 ±71 (SD) Scorepunkten eine signifikant höhere Punktezahl als die Adipösen (492±90). Schlussfolgerung: Die schwachen Ergebnisse der adipösen Schülerinnen und Schüler bei statischen und dynamischen Gleichgewichtsanforderungen zeigen die Notwendigkeit eines gezielten und individuellen Bewegungsprogramms zum Abbau von sensomotorischen Schwächen auf. Da die Zunahme der Adipositas sehr stark mit der Zunahme der körperlichen Inaktivität korreliert und durch Bewegungsmangel grundlegende physische Funktionen eingeschränkt werden, müssen daher besonders bei adipösen Kindern und Jugendlichen Maßnahmen zur Prävention und Rehabilitation motorischer Schwächen und den damit vermutlich einhergehenden psychischen und sozialen Defiziten getroffen werden.

Schlüsselwörter: Gleichgewichtsfähigkeit, sensomotorische Feedbackleistung, Fettleibigkeit, Schule.


The prevalence of lack of physical activity, overweight and obesity has increased for all age groups world wide in the last decades. The increased “domestication” and physical inactivity combined with the constant availability of food, but also socioeconomic changes are often cited as causes (12, 14, 21, 31, 33). Compared to their normal-weight contemporaries, obese children and juveniles bear a significantly higher risk of getting obesity-related diseases like diabetes mellitus or coronary heart disease (232). Several studies (2, 4, 10, 22) further prove that a significant decrease of motor skills can be observed during the last years. Besides inferior energetic and physical condition, a decrease in coordinative abilities, predominantly in the ability to balance (3, 4), can be observed. Several studies about the motor abilities of overweight and obese children and juveniles are also available (2, 5, 11, 13, 19, 30). The results of these studies show, that obese children and juveniles for the most part have inferior motor abilities as far as endurance and coordinative abilities are concerned. In contrast to this, there are almost no results concerning the sensorimotoric feedback performance of obese children and juveniles.
Coordinative abilities include a series of skills representing particular aspects of motor control (18). They enable individuals to perform motor action in predictable (stereotype) and unpredictable (adaption) situations in a controlled and economic manner and also promote faster learning of new sports-related movements (9). Besides the ability to balance, the ability to orientate, differentiate, rhythmicise, react, adapt and to link are considered to be the most important coordinative abilities (34).
A well-developed ability to balance is a prerequisite for many daily activities as well as for sports-related movements and beyond that an important factor of accident prevention (15, 17). According to Fetz (7), sensorimotoric balance is the ability to attain or maintain an intended state of balance in posture (static) and /or movement (dynamic).
With the help of a feedback system, study participants are given sensorimotoric tasks and receive a feedback in the form of optical, acoustic or tactile signals concerning the magnitude, intensity and speed of their motor actions. This results in a comparison of the internal/subjective perception and the information from the feedback system, which is normally done by software using a PC or a laptop computer, enabling a recording of the results (28). The aim of this study was to analyse the differences in sensorimotoric feedback performance between obese and normal-weight 11- to 15-year old school children using the MFT® Challenge Disc. The device used in this study provides a higher objectivity and a better quantification compared to other simple balance devices ( for example a simple T-shaped bar to perform a one legged stance).


The group of participants consisted of 87 school children between the age of 11 and 15. 20 of them were also patients at an obesity rehabilitation centre because of their extreme overweight. The remaining 67 participants were local school children (both the school and the obesity rehabilitation centre “Insula” are within the community of Bischofswiesen in Bavaria, Germany). Only children, juveniles and young adults with a BMI above the 97th percentile are admitted to this obesity rehabilitation centre. For this study, a body mass index (BMI) above the 97th percentile according to Kromeyer-Hauschild (25) was the base criteria for placing the participants in the “obesity” group. This was tested and confirmed by collecting anthropometric data.
The control group was also tested for anthropometric data. Schools children with a BMI between >90th and <97th percentile were eliminated from the study because of the very low sample size (n=8). School children with a BMI above the 97th and below the 10th percentile were not part of the sample. As a consequence, 67 normal-weight local school children remained as the control group that was compared to the obesity group (n=20) from the obesity rehabilitation centre “Insula” (Tab. 1). The local school authority approved this study.

Test Device
The sensorimotoric feedback training device MFT® Challenge Disc was used for this study (Fig. 1). This device consists of a round standing plate with a diameter of 420mm, which is connected to a base plate by four rubber buffers. Accordingly, the standing plate can tilt and move in all dimensions. The maximum tilt angle is 12 degrees. Balance-regulating movements of a person standing on the device result in tilting movements of the standing plate, which are detected by three-dimensional tilt sensors. The range of measurement of the sensors is 20 degrees with a precision of 0,5 degrees and a sampling rate of 100 Hz. The data is transferred into software using an USB cable (28). The balance-regulating movements are visualised by software using a regulatory circuit on a monitor in front of the participants. This regulatory circuit is supposed to be held within a target circle by using fine motor skills. The tests for this study were all done using the easiest setting (level 5). The exact procedure of the tests is shown in table 2. In order to prevent neuromuscular exhaustion, the test software implemented ten-second breaks between the exercises. The MFT® Challenge Disc is functionally similar to the test device for sonsorimotoric balance „Biodex Balance Systems“®. This device quantifies the dynamic and static balancing abilities of individuals on an instable surface and delivers objective, valid and reliable data (1).
In each one of the nine tests a maximum score of 100 points can be achieved depending on the amount of time the regulatory circuit is within the target circle. For the evaluation the scores of the static tests (3, 6, 9) and the scores of the dynamic tests (1, 2, 4, 5, 7, 8) were added up independently and used for further analysis. Beyond that, the total score of each participant was recorded.

Test Implementation
The obese and normal-weight school children were tested independently and being barefoot in a quiet room in the school in order to provide an optimal level of concentration. The tests were explained and a test run was done before the actual tests in order to get familiar with the tests themselves. The participants had to get on the test device in a two-legged stance with slightly bend knees and the position of their feet being given by markers on the device (Fig. 1).

The analysis of the collected data was done using statistics software SPSS version 15. The data were tested for normal distribution by applying the Kolmogorov-Smirnov test. The comparison between the obese and the normal-weight children was realised using a T-tests for independent samples with the significance level being set at p≤0,05.


Comparing the sensorimotoric test results of both groups (obese versus normal-weight) regarding the total score, a significant difference can be observed. The normal-weight group on average achieved a total score of 650±71 (SD), which is significantly higher (p<0,01) than the average score of the obese group with a total score of 492±90 (SD) (Tab. 3). The results of the normal-weight and the obese groups, differentiated in static and dynamic balance performance, can be seen in Tab. 4. In the static as well as the dynamic balance tests, the obese children achieved significantly (p<0,01) lower scores. The balancing ability was not influenced by the sex of the participants (p>0,1).


In this study the sensorimotoric feedback performance of normalweight and obese school children age 11 to 15 were analysed. The obese children and juveniles scored significantly lower (p<0,01) in all tests (total score, static and dynamic balancing abilities). The lower balancing ability of the tested obese school children is seen as the main cause for these results. The results of this study are in line with the results of studies of other authors (20, 23). In their studies, for example, a general deficit in the balancing ability of obese children was identified using body coordination tests for children (Körperkoordinationstestsfür Kinder - KTK). Prätorius and Milani (27) criticise these body coordination tests for children in this context, since this set of test does not only test coordinative abilities, which may distort the results.
According to a study done by Bappert et al. (2), overweight and obese children and juveniles do not necessarily have to have a lower of ability when doing isolated static balance tests. In their study, overweight children did not do significantly worse when performing a one-legged stand (static balance) compared to normalweight children. This could not be confirmed in our study, since the obese children performed significantly worse when doing static balance tests compared to the normal-weight children.
The test device used in this cross-sectional study gave visual feedback about the static and dynamic sensorimotoric balance performance of the participants. A good balancing ability is a prerequisite for almost all activities in daily life. Limitations of the balancing ability often result in a higher risk of falling down and the related injuries (28). Xiang et al. (35) confirm that the accident risk of obese individuals is twice as high as it is for normal-weight individuals. Well-developed coordinative abilities are therefore very important and, according to Hirtz (17), further play a very important role in the prevention of accidents and mishaps, besides providing the ability to successfully master every day life. Beyond that, psychosocial limitations play an important role for obese children and juveniles. They are often treated as outsiders and are many times being isolated, especially in school and leisure sports. Because of this they lose their joy of movement and suffer from low self-esteem. Obese children and juveniles therefore not only suffer from physical effects, but also from considerable psychological burden (16, 25, 26).
Since the rise of obesity correlates very highly with the increase of physical inactivity (6, 8, 29) and basic physical functions are limited by lack of movement, preventive and rehabilitative measures to counter motor deficits and the presumably related psychological and social deficits have to be implemented for obese children and juveniles. Zeuschner and Freidl (36) in this context refer to the importance of interdisciplinary cooperation of medicine, psychology, nutritional and sport science. Just like different video games, the test device used in this study includes several forms of active games to improve balancing abilities. These could possibly be used by obese children and juveniles to playfully train their balancing abilities, which could lead not only to a decrease in accident risk, but also to an increase in self-esteem.

Limitations of this study
The generalizability of the results of this study is limited because of the low number of participants (n=87). Furthermore, the parameters were only measured at one point of time in this cross-sectional study. Consistent results in repeated tests would further support the validity of the results.


  1. Arnold BL, Schmitz RJ Examination of balance measures produced by the Biodex stability system. J Athl Train 33 (1998) 323 - 327.
  2. Bappert S, Woll A, Bös K Motorische Leistungsunterschiede bei über- und normalgewichtigen Kindern im Vorschulalter. Haltung und Bewegung 23 (2003) 35 - 37.
  3. Bös K, Mechling H Dimensionen sportmotorischer Leistungen im Längsschnitt, in: Ludwig G (Hrsg.): Koordinative Fähigkeiten – Koordinative Kompetenz. Univ. Gesamthochschulverlag, Kassel, 2002, 50 - 58.
  4. Crasselt W Entwicklung der körperlich-sportlichen Leistungsfähigkeit von Kindern und Jugendlichen im Zeitraum von 1981-1991, in: Rostock J, Zimmermann K (Hrsg): Bericht zum Kolloquium „Theorie und Empirie sportmotorischer Fähigkeiten“. Chemnitz, Institutsbericht, 1998, 50 - 59.
  5. D`Hondt E, Deforche B, De Bourdeaudhuij I, Lenoir M: Childhood obesity affects fine motor skill performance under different postural constraints. Neurosci Lett 440 (Issue 1) (2008) 72 - 75.
  6. Ehrsam R, Stoffel S, Mensink G, Melges T Übergewicht und Adipositas in den USA, Deutschland, Österreich und der Schweiz. Dtsch Z Sportmed 55 (2004) 278 - 285.
  7. Fetz F Bewegungslehre der Leibesübungen. Österreichischer Bundesverlag, Wien, 1989.
  8. Fogelholm M, Stigman S, Huisman T, Metsämuuronen J Physical fitness in adolesents with normal weight and overweight. Scand J Med Sci Sports 18 (2008) 162 - 170.
  9. Frey G Zur Terminologie und Struktur physischer Leistungsfaktoren und motorischer Fähigkeiten. Leistungssport 7 (1977) 339 - 362.
  10. Gaschler P Motorik von Kindern und Jugendlichen heute – Eine Generation von „Weicheiern, Schlaffis und Desinteressierten“? (Teil 3). Haltung und Bewegung 21 (2001) 5 - 17.
  11. Graf C, Koch B, Kretschmann-Kandel E, Falkowski G, Christ H, Coburger S, Lehmacher W, Bjarnason-Wehrens B, Platen P, Tokarski W, Predel HG, Dordel S Correlation between BMI, leisure habits and motor abilities in childhood (CHILT-Project). Int J Obes 28 (2004) 22 - 26.
  12. Graf C, Dordel S, Koch B, Predel HG Bewegungsmangel und Übergewicht bei Kindern und Jugendlichen. Dtsch Z Sportmed 57 (2006) 220 - 225.
  13. Graf C, Jouck S, Koch B, Staudenmaier K, von Schlenk D Motorische Defizite - wie schwer wiegen sie? Übergewicht und Adipositas im Kinder- und Jugendalter. Monatsschr Kinderheilkd 155 (2007) 631-637.
  14. Graf C, Starke D Prävention von Übergewicht und Adipositas im Kindes- und Jugendalter – vom Modell zur Anwendung. Dtsch Z Sportmed 60 (2009) 108 - 111.
  15. Greier K, Raschner CH Sensomotorisches Feedbacktraining in der Volksschule. Bewegungserziehung 64 (2010) 10 - 15.
  16. Hauner H Komorbiditäten und Komplikationen der Adipositas, in: Schusdziarra V (Hrsg): Adipositas-Moderne Konzepte für ein Langzeitproblem. Uni-Med Verlag AG, Bremen, 2003, 30 - 38.
  17. Hirtz P Koordinative Fähigkeiten und Beweglichkeit, in: Meinel K, Schnabel G (Hrsg): Bewegungslehre-Sportmotorik. Meyer & Meyer Verlag, Aachen, 2007, 212 - 242.
  18. Hohmann A, Lames M, Letzelter M Einführung in die Trainingswissenschaft. Limpert Verlag, Wiebelsheim, 2002.
  19. Kaspar T, Korsten-Reck U, Rücker G, Jotterand S, Bös K, Berg A Sportmotorisches Fähigkeiten adipöser Kinder: Vergleich mit einem Referenzkollektiv und Erfolge des Therapieprogramms FITOC. Aktuell Ernaehr Med 28 (2003) 300 - 307.
  20. Korsten-Reck U, Bauer S, Keul J Sports and nutrition – an out-patient programm for adipose children (long- term-experience). Int J Sports Med 15 (1994) 242 - 248.
  21. Korsten-Reck U, Kromeyer-Hauschild K, Korsten K, Rücker G, Dickhut HH, Berg A Freiburger Intervention Trial for Obese Children (FITOC): Ergebnisse einer klinischen Beobachtungsstudie. Dtsch Z Sportmed 57 (2006) 36 - 41.
  22. Korsten-Reck U, Kaspar T, Korsten K, Kromeyer-Hauschild K, Bös K, Berg A, Dickhuth H Motor abilities and aerobic fitness of obese children. Int J Sports Med 28 (2007) 762-767.
  23. Kretschmann E, Lawrenz A, Lawrenz W, Schmitz H, Nespethal K, Bjarnason-Wehrens B Motorische Entwicklung und Leistungsfähigkeit bei adipösen Kindern und Jugendlichen [Abstract des 37. Deutschen Sportärztekongresses Heft 7/8]. Dtsch Z Sportmed 52 (2001) 26.
  24. Kromeyer-Hauschild K, Wabitsch M, Kunze D, Geller F, Geiss HC, Hesse V, von Hippel A, Jaeger U, Johnsen D, Korte W, Menner K, Müller G, Müller JM, Niemann-Pilatus A, Remer T, Scaefer F, Wittchen H, Zabransky S, Zellner K, Ziegler A, Hebebrand J Perzentile für den Body-Mass-Index für das Kinder- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd 149 (2001) 807 - 818.
  25. Must A, Jaques PF, Dallal G, Bajema CJ, Dietz WH Long –term morbidity and mortality of overweight adolescents. A follow-up of the Harvard Growth Study of 1922 to 1935. N Engl J Med 327 (1992) 1350-1355.
  26. Nething K, Stroth S, Wabitsch M, Galm C, Rapp K, Brandstetter S, Berg S, Kresz A, Wartha O, Steinacker JM Primärprävention von Folgeerkrankungen des Übergewichts bei Kindern und Jugendlichen. Dtsch Z Sportmed 57 (2006) 42 - 45.
  27. Prätorius B, Milani TL Motorische Leistungsfähigkeit bei Kindern: Koordinations- und Gleichgewichtsfähigkeit: Untersuchungen des Leistungsgefälles zwischen Kindern mit verschiedenen Sozialisationsbedingungen. Dtsch Z Sportmed 55 (2004) 172 - 176.
  28. Raschner C, Lembert S, Mildner E, Platzer HP, Patterson C Entwicklung eines sensomotorischen Feedbacktrainingsgerätes für den begleitenden Einsatz in der neuronalen Rehabilitation. Bewegungstherapie und Gesundheitssport 24 (2008) 241-245.
  29. Reinehr T, Michael D, Kersting M Therapie der Adipositas im Kindes- und Jugendalter. Hogrefe Verlag, Göttingen, 2010.
  30. Roth K, Roth C Entwicklung koodinativer Fähigkeiten, in: Baur J, Bös K, Singer R (Hrsg): Handbuch Motorische Entwicklung. Hofmann Verlag, Schorndorf, 2009, 197 - 247.
  31. Steinacker JM Übergewicht, Adipositas, Gesundheit und Prävention. Dtsch Z Sportmed 57 (2006) 213.
  32. Wabitsch M, Denzer C Examination and Diagnostic Procedure, in: Kiess W, Marcus C, Wabitsch M (Hrsg): Obesity in Childhood and Adolescense. Karger Verlag, Basel, 2004, 30-40.
  33. Wang Y, Lobstein T Worldwidetrendsinchildhoodoverweightandobesity. Int J Pediatr Obes 1 (2006) 11 - 25.
  34. Weineck J Optimales Training. Leistungsphysiologische Trainingslehre unter besonderer Berücksichtigung des Kinder- und Jugendtrainings. 15. Auflg., Spitta Verlag, Balingen, 2007.
  35. Xiang H, Smith GA, Wilkins JR, Chen G, Grim Hostetler S, Stallones L Obesity and risk of nonfatal unintentional injuries. Am J Prev Med 29 (2005) 41 - 45.
  36. Zeuschner V, Freidl W Ergebnisse eines Gesundheitsförderungsprogramms für Adipöse. Dtsch Z Sportmed 58 (2007) 138 - 143.
Dr. Klaus Greier
Bewegungs- und Sporterziehung
Pädagogische Hochschule (KPH) Stams
Stiftshof 1
6422 Stams